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Abstract

Estimating soil moisture typically involves calibrating models to sparse networks of
in situ sensors, which introduces considerable error in locations where sensors are
not available. We address this issue by calibrating parameters of a parsimonious soil
moisture model, which requires only antecedent precipitation information, at gauged lo-
cations and then extrapolating these values to ungauged locations via a hydro-climatic
classification system. Fifteen sites within the soil climate analysis network (SCAN) con-
taining multi-year time series data for precipitation and soil moisture are used to cali-
brate the model. By calibrating at one of these fifteen sites and validating at another, we
observe that the best results are obtained where calibration and validation occur within
the same hydro-climatic class. Additionally, soil texture data are tested for their impor-
tance in improving predictions between calibration and validation sites. Results have
the largest errors when calibration/validation pairs differ hydro-climatically and edaph-
ically, improve when one of these two characteristics are aligned, and are strongest
when the calibration and validation sites are hydro-climatically and edaphically similar.
These findings indicate considerable promise for improving soil moisture estimation in
ungauged locations by considering these similarities.

1 Introduction

Soil moisture estimates are needed routinely for many practical applications, such as
irrigation scheduling and operation of farm machinery. They are typically produced ei-
ther through remote sensing or sparse networks of in situ sensors. Although recent
remote sensing studies have confirmed that such measurements approximate in situ
sensor networks (Jackson et al., 2012), satellite-based sensors provide measurements
at a spatial resolution of several kilometers — too large for daily agricultural decision
making. On the other hand, in situ sensor networks produce values that are difficult to
generalize to locations with no proximal sensors. Under these circumstances, dynamic
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soil moisture evolution models are typically used for soil moisture estimation at the de-
sired location, using information from the nearest available sensors. This method of
soil moisture estimation immediately raises the issue regarding the type of model that
is most appropriate for such an application. One could think of several different types
of models that may be suitable.

The first group of soil moisture models considers only the variability of precipitation
as the primary mechanism for wetting/drying (precipitation (Entekhabi and Rodriguez-
lturbe, 1994). These models often employ an “antecedent precipitation index” (API),
defining a pre-established temporal window for antecedent rainfall. This index is then
used to estimate current levels of soil moisture (Saxton and Lenz, 1967) and has
been implemented with recession modeling for soil water in agriculture (Choudhury
and Blanchard, 1983) and also in weather prediction (Wetzel and Chang, 1988). Other
precipitation-focused approaches utilize stochastic models to estimate the distributions
of soil moisture values using an initialization of daily rainfall (Farago, 1985). Both the
stochastic and API approaches require some initial condition for soil moisture at the
forecast location — requiring either professional judgment or a sensor. While these is-
sues can be addressed using a soil water balance model, this type of model must be
recalibrated frequently, as its errors are cumulative (Jones, 2004).

The second group of models adopts a more hydrologic approach, estimating soil
moisture from surface radiation and precipitation (Capehart and Carlson, 1994). More
sophisticated models of this type, such as HYDRUS (Simunek et al., 1998), require
detailed knowledge of hydraulic soil parameters, information regarding root structures,
soil temperature readings, ionic chemistry, CO, concentrations, solute transport data,
and detailed atmospheric/meteorological information, which are not widely available,
especially for routine applications envisaged here.

The third group of models is agriculturally-focused. Gamache et al. (2009) developed
a soil drying model for which cone penetrometers and soil moisture sensors are re-
quired. At most remote sites, these data sources are not currently accessible. Another
similar approach employs specific soil type information (theoretically, publicly available
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data), but ultimately requires proximal sensors to provide the needed soil moisture es-
timates (Chico-Santamaria et al., 2009).

Pan et al. (2003, 2012) addressed the shortcomings of the existing modeling ap-
proaches reviewed above by developing what they called a “diagnostic soil moisture
equation” (i.e., model) in the form of a partial differential equation representing the
lumped water balance of a vertical soil column, and representing the soil moisture at
any moment in time as a function of the sum of a temporally decaying sequence of
observed past rainfall events. The model has the advantage that initial soil moisture
conditions are not required (only antecedent precipitation data), nor must the model be
recalibrated periodically. However, this approach does require a soil moisture sensor
at the relevant location for initial calibration of the model's parameters. This method
has the disadvantage that the presence of soil heterogeneity could necessitate a large
number of sensors to account for the spatial variation of soil moisture (Pan and Peters-
Lidard, 2008). Furthermore, decision support often requires estimation at locations
lacking sensors.

The aim of this paper is to present and test an approach that can help overcome the
problems associated with the Pan et al. soil moisture estimation model. The proposed
solution involves calibrating the Pan et al. diagnostic soil moisture equation (model) at
gauged sites and then extrapolating the calibrated model to ungauged sites by invoking
similarity. Similarity here is defined on the basis of hydro-climatic characteristics, using
a classification system developed by Coopersmith et al. (2012), as well as edaphic
(soil) properties. The proposed new scheme maintains the advantage of Pan et al’s
parsimonious soil moisture model in that it does not require specification of initial soil
moisture condition, and also there is no need to recalibrate periodically. The model’s
simplicity also permits implementation of the model in a manner that can easily be
refit with new parameters, where necessary. Section 2 provides more details on the
approach.

To calibrate and validate the model, we use data from the US Department of Agri-
culture’s (USDA) Soil Climate Analysis Network (SCAN), described in Schaefer et
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al. (2007). This national array of soil moisture sensors (with co-located precipitation
sensors) delivers hourly data at a variety of publically-accessible sites throughout the
United States. Fifteen sensor locations with numerous years of high-quality, minimally-
interrupted data were selected for further analysis. These sites display considerable
hydrologic diversity, which aids in demonstrating that the nationwide application of the
proposed soil moisture model using precipitation data represents a feasible goal. Re-
sults of the analysis are given in Sect. 3, followed by discussion in Sect. 4 to suggest
further improvements and conclusions are presented in Sect. 5.

2 Methodology

The proposed modeling approach involves four steps, summarized in Fig. 1 and de-
scribed in more detail in the sections below. First, the diagnostic soil moisture model
of Pan et al. is calibrated at locations with ample data. Given that the focus of this
study is on soil moisture estimation for agriculture, we only consider prediction during
the growing season, which is appropriate given that the model does not address snow
melt processes. Second, the predictions at these locations are improved using machine
learning techniques for error correction. Third, the classification system proposed by
Coopersmith et al. (2012) is used to generalize the parameters calibrated at each lo-
cation, enabling its application at other sites characterized by the same hydro-climatic
class. Fourth, sites are examined for edaphic (soil property) similarity in addition to
hydro-climates. The results of these four steps are then examined to identify which
approach to regionalization performs best.

2.1 Step 1: calibration using a two-layer genetic algorithm

Unlike the original diagnostic soil moisture calibrations, the ultimate objective of this
work is to enable agricultural decision support in near real time. To this end, the daily
model from Pan et al. (2012) is first modified to yield an hourly model within the same

2325

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

HESSD
11, 2321-2353, 2014

Using hydro-climatic
and edaphic
similarity to enhance
soil moisture

E. J. Coopersmith et al.

' I““ II“


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/2321/2014/hessd-11-2321-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/2321/2014/hessd-11-2321-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

framework. Genetic algorithms are then deployed to calibrate the model, enabling more
efficient exploration of the parameter search space than the traditional Monte Carlo
search, which was the approach taken by Pan et al. (2012).

Genetic algorithms (GAs), a subset of evolutionary algorithms, were originally devel-
oped by Barricelli (1963) and have become increasingly common in environmental and
water resources applications, including the calibration of hydrologic model parameters
(e.g., Cheng et al., 2006; Singh and Minsker, 2008; Zhang et al., 2009).

In this work, a simple genetic algorithm uses the operations of selection, crossover,
and mutation (for reference, see Goldberg, 1989) to search for parameters that mini-
mize prediction errors from the diagnostic soil moisture equation (Pan et al., 2012):

Oost = Ore + (P — O1)(1 - 9_04[3)' (1)

Here 6, represents the best estimate of soil moisture during a given hour. 8,, denotes
residual soil moisture, the minimum quantity of moisture that is present regardless of
the length of time without precipitation. ¢, the soil’s porosity, signifies the maximum
possible soil moisture value, at which point the soil becomes saturated and cannot
increase its moisture content. Finally, ¢, is a parameter related to conductivity and
drainage properties, essentially defining the rate at which soil can dry. If ¢, assumes
a value of zero, the soil is permanently at its residual soil moisture value, 8,, — a soil
that dries infinitely rapidly. Conversely, as ¢, becomes large, the soil will permanently
assume the value of its porosity, ¢, — a soil that dries infinitely slowly. The 8 term in
Eq. (1) is calculated in Eq. (2) below:

j=i-1

Aoty LA (1ot @

i=n-1

p=2
j=2

Here, P; denotes the quantity of rainfall during hour / (day in the original presentation in

Pan et al., 2003). The soil depth at which an estimation occurs is given by z. This con-

volution summation has a temporal window of size n for considering past precipitation.
2326

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

HESSD
11, 2321-2353, 2014

Using hydro-climatic
and edaphic
similarity to enhance
soil moisture

E. J. Coopersmith et al.

' I““ II“


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/2321/2014/hessd-11-2321-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/2321/2014/hessd-11-2321-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

To wit, yesterday’s rainfall affects today’s soil moisture, last week’s rainfall is relevant,
but less so, and rainfall from ten years ago is probably not relevant.

To choose the appropriate value for n, the value of @ is calculated at each hour
throughout the dataset — setting n to a very large value (2000 h, denoted by M) ini-
tially. Next this “beta series” (where n = M) is correlated with a separate beta series,
calculated where n < M. If the correlation coefficient between these two time series
approaches unity, then the smaller value of n is selected. Otherwise, n is increased
incrementally until the correlation between the n <« M beta series and the n = M beta
series approaches unity.

Finally, the n; terms signify the estimated potential evaporation/drainage loss at hour
/ of the calendar year. As this algorithm does not presume any more detailed knowl-
edge of potential evaporation/drainage behaviors, this “eta series” is modeled as a si-
nusoid (Pan et al., 2012) with period 8760 (the number of hours in a year). The eta
(n) series is required to calculate the beta (8) series (EqQ. 2), which is required to use
the diagnostic soil moisture equation (Eq. 1). Thus, before any other parameters are
chosen, a generalized sinusoidal form of 7 is estimated as given in Eq. (3):

n=asin(i - 6)+vy. (3)

Here, a represents the sinusoid’s amplitude, y denotes the vertical shift, and & signifies
the necessary phase shift. These three parameters are fitted via the genetic algorithm
such that the correlation between the beta series (using the eta series implied by a, y,
and &) and the observed soil moisture series (6,,s) is maximized. Once values for the
eta series are established, the remaining three parameters of Eq. (1) (8,e, ¢, and c,)
are then fitted by a second application of the genetic algorithm, this time minimizing
the sum of squared errors between the estimated soil moisture series (8,¢) and the
observed values (6,s)-
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2.2 Step 2: error correction using the k-Nearest Neighbors machine learning
algorithm

After the parameters of the diagnostic soil moisture equation (Eqg. 1) have been cal-
ibrated, the hourly precipitation time series is used to generate a soil moisture time
series during the growing season months of interest. Discrepancies between the ob-
served soil moisture values (6,,s) and the estimated values (6,.¢) are computed as
shown in Eq. (4):

Oops = Oest + € (4)
where ¢ represents the error associated with any hour’s soil moisture estimate.

To correct biases in these errors, the k-Nearest Neighbor algorithm (Fix and Hodges,
1951) is employed to predict ¢ using the characteristics from the training data. More
specifically, the data are searched for the most similar matches in terms of time of day,
day of year, 8,4, 6(n), and B(M) — B(n). For example, if the model returns a prediction
of Bt = 0.35 at 14:00 LT during July when rainfall has been heavy recently but drier
over a longer period, KNN will search the training set for other estimates near 0.35
made on mid-summer afternoons where a similar recent rainfall pattern has been ob-
served. Next, the algorithm averages the value of the error, ¢, associated with those
types of conditions, producing an estimated error, .. Each validation estimate is then
adjusted to be 6. + €. This technique allows consistent model biases, such as un-
derestimating wetter days and overestimating drier days, to be corrected.

This error correction model also accounts for diurnal soil moisture variations that
were not considered in developing the diagnostic soil equation, which was designed
to deliver daily soil moisture estimates. Consider a soil moisture estimate at 16:00 LT,
after soil has had a full day of sunlight (theoretically) to dry. As the diagnostic soil mois-
ture equation only considers drainage and evapotranspiration losses on a daily basis,
O, Will be larger than 6. Yet, because this type of mistake presumably occurred fre-
quently throughout the training data, the algorithm will locate other 16:00 LT estimates,
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each of which will be biased in the same direction, and our final soil moisture estimates
will take this bias into account, improving the results as shown subsequently.

To assess the performance of the soil moisture models with and without machine
learning, an R? value as defined in Eq. (5) is used, as this value represents the propor-
tion of variance in soil moisture explained by the developed model.

R2=1-220 (5)

where SSR denotes the sum of squared residuals and the SST term signifies the total
sum of squares, i.e., the sample’s variance.

2.3 Step 3: estimation by hydro-climatic similarity

This step tests the hypothesis that the classification system by Coopersmith
et al. (2012) can be used to generalize the calibrated parameters for the diagnostic
soil moisture equation using hydro-climatic similarity. If two locations are assigned the
same hydro-climatic classification, then the calibrated parameters from one SCAN sen-
sor within that class will be assumed to perform well at another.

This hypothesis was tested at fifteen SCAN sensors for which soil moisture and
precipitation data are available hourly for a period of several years. These sensors
are located in diverse geographic locations and hydro-climatic classes in lowa, North
Carolina, Pennsylvania, New Mexico, Arkansas, Georgia, Virginia, South Carolina, Ne-
braska, Colorado, and Wyoming. The data at each of these locations were divided into
training/validation sets and parameters were calibrated using training data only. Next,
these parameters were employed on the validation sets at the locations for which they
were calibrated. The subsequent R? values (proportion of variance in soil moisture ex-
plained by the machine-learning-enhanced diagnostic soil moisture equation, see Steel
and Torrie, 1960, for reference) defined a baseline level of performance for that site.

The process of cross-validation is detailed below:

1. Consider two sites, x and y, chosen from the fifteen available calibrated locations.
2329
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2. Estimate the soil moisture values in the validation dataset of site y, using the
parameters calibrated from the training dataset at site x.

3. Record the difference between the A% baseline value at site y (obtained using
parameters calibrated at site y) and the performance obtained at site y using
parameters calibrated at site x.

4. Repeat steps 1-3 for all 210 possible (x, y) pairs where x # y.

Note: (x,y) and (y, x) are not equivalent. One signifies the performance of parame-
ters calibrated at site x making predictions at site y, the other signifies the performance
of parameters calibrated at site y making predictions at site x.

At this point, three types of (x,y) pairs emerge. If the hypothesis is correct, then
the first type, when x and y fall within the same hydro-climatic class, should display
limited losses in predictive power. The second type, when x and y fall within a “simi-
lar’” hydro-climatic class (two classes differing by a single division of the classification
tree developed in Coopersmith et al., 2012) should display greater losses of predictive
power. Finally, the third type, when x and y fall in two unrelated classes, should display
the largest loss of predictive power.

2.4 Step 4: estimation by hydro-climatic and edaphic similarity

The final step extends the hypothesis proposed in Step 3 by evaluating the impacts
of soil texture and type on soil moisture predictive power. The fifteen sites from the
SCAN network are examined based upon the soil textural information available from
the Pedon soil reports that SCAN provides, as well as data from NRCS’s soil survey
database’.

This information allows sites already deemed hydro-climatically similar to be further
sub-divided into sites that are and are not edaphically similar. Analogous to the previ-
ous section, we consider pairs of sites, x and y, where parameters are calibrated at

! http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
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site x and validated at site y. In this case, four groups can be defined — the first, where
x and y are hydro-climatically and edaphically similar, the second, where x and y are
hydro-climatically similar, but differ edaphically, the third, where x and y are edaphically
similar, but differ hydro-climatically, and finally, where x and y are hydro-climatically and
edaphically dissimilar.

3 Results

This section begins by presenting the results of the machine learning approach used
in error correction during the initial calibration step (Sect. 3.1). Next, Sect. 3.2 presents
results for the hydro-climatic similarity analysis, illustrating the performance of calibra-
tion/validation pairs within the same class and without. Finally, Sect. 3.3 shows how the
predictive power improves when both hydro-climatic and edaphic similarity are consid-
ered.

3.1 Testing the value of machine learning error correction for soil moisture
prediction using the diagnostic soil moisture equation

Figure 2 shows the performance of the calibrated parameters for the 15 SCAN sites
using only the diagnostic soil moisture equation (Step 1 of the methodology) along with
the subsequent improvement in performance following machine learning error correc-
tion (Step 2). In each case, the six parameters required for the implementation of the
diagnostic soil moisture equation are calibrated using training data from before 2010.
Sensors with hourly precipitation and soil moisture time series data between 2004 and
2009 (inclusive) provide four to six years of training data (some sites are missing one or
two years of data). Only days of the year where snow cover is unlikely are used to train
the algorithm (from the 100th to 300th day of the year in all locations, for consistency).
Validation data consist of days 100—-300 for 2010 and 2011.
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The results illustrate that in all fifteen test cases, performance within the validation
sample is improved by machine learning modeling of residuals from the training set, in
some cases, as much as 26.9 % of the unexplained variance (site 2091) in soil moisture
is corrected from by this technique. The average results (far right column, Fig. 2) illus-
trate that the diagnostic soil moisture equation explains just 69.2 % of the variance in
soil moisture (o = 0.83) before machine learning corrections occur, but explains 77.5 %
of the variance in soil moisture (o = 0.88) thereafter.

To explore these findings in more detail, three of the 15 SCAN sites, chosen to rep-
resent different hydro-climatic locations — New Mexico (#2015, desert), lowa (#2068,
plains), and Georgia (#2013, hills/woods) are examined to illustrate how improvements
from adding machine learning error models to the diagnostic soil moisture equation
differ across sites. These three sites represent three distinct hydro-climatic classes,
with significant differences in seasonality of precipitation, aridity, timing of maximum
precipitation, and timing of maximum runoff. Using error correction models for predic-
tion at these sites increased R? values by an average of 8.2 %, which is similar to the
8.3 % improvement in R? averaged across all fifteen sites. Thus, these three locations
are representative in terms of both hydro-climatic diversity and their responsiveness to
machine learning.

The base soil moisture model results from applying Step 1 at the three sites are
displayed in Figs. 3-5. These predictions are shown with the results produced by de-
ploying the machine learning algorithm (KNN) in Step 2 to remove bias and correct
errors. In each image, the blue line represents the observed soil moisture readings, the
red line represents the estimates generated by the diagnostic soil moisture equation,
and the green line represents those predictions after the machine learning algorithm
has removed biases and corrected errors. Soil moisture values (y-axis) are measured
in percentage terms (0—100).

In Fig. 3, the diagnostic soil moisture equation is able to trace the general trend of the
soil moisture time series (o = 0.860). However, during the middle of the time series, in
which the observed soil moisture values fall below 5 %, the benefits of machine learning
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error correction are most noteworthy. There are other hours scattered throughout the
dataset where the green line (ML prediction) follows the blue line (observed values)
much more closely than the red line (diagnostic soil moisture equation). The green line
(0 =0.917) not only improves upon the correlation value of Pearson’s Rho (the square
root of the R value in Eq. 5), but also displays marked improvement for those cases in
which the diagnostic soil moisture equation produces significant errors.

During the validation period, considerable flooding occurred in lowa (Fig. 4). Flood
events of this nature were not experienced during calibration, and the porosity parame-
ter, @, (Eq. 1) was set at 38.4 %. While this was appropriate for the training data (during
which soil moisture did not exceed this level), extreme flooding events caused moisture
levels for which the diagnostic soil moisture equation was not properly calibrated. The
machine learning driven error correction improves the diagnostic soil moisture equation
(o = 0.846) significantly (o = 0.915), but without flooding events in the training set, is
unable to correct for the errors due to exceedingly wet (flooded) soil. Underestimations
due to floods, although detrimental in terms of numerical errors, are not necessarily
a problem for decision support of agricultural or construction activities, for example. If
a model warns that a site is very wet and in reality, it is even wetter than predicted, the
user has still been given adequate warning not to attempt activity at that site.

In Fig. 5, a soil moisture series from Georgia is modeled by the diagnostic soll
moisture equation. Even before adding any error correction, the equation performs
well (0 =0.936) and the machine learning approach yields a smaller improvement
(0 =0.941). It is worth noting that machine learning does not damage an already ex-
cellent performance, offering slight improvements when possible and essentially no
correction when training data suggest the model has already performed adequately.

In addition to generalizing the parameters calibrated in the diagnostic soil moisture
equation, the error correction approach allows for systematic biases to be removed by
searching training data for similar conditions and then predicting the types of mistakes
most likely to occur. Figure 6, by zooming in upon a 30 day period from Fig. 2, illustrates
how machine learning reduces errors by introducing a diurnal cycle into a model that
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previously lacked one. The remaining bias is likely explained by a slightly wetter training
dataset as compared with the validation data.

By addressing such systematic biases, machine learning enables model perfor-
mance to improve with each successive growing season as the training dataset ex-
pands. For instance, although the fields in lowa endured flooding during the valida-
tion period and subsequently made errors, such errors would eventually populate the
training data. The next time such flooding occurs, the model is likely to recognize the
occurrence of those same conditions and adjust the diagnostic soil moisture equation’s
predictions accordingly. In this vein, model performance is likely to improve over time,
especially with the models already showing reasonable accuracy using only a few years
of training data.

3.2 Cross-validation results for hydro-climatic similarity: qualitative findings
and significance testing

To test the hypothesis that models calibrated in one location can be used in a hydro-
climatically similar location, cross-validation was used as described in Step 3 of Sect. 2.
The fifteen SCAN sites yield 152 = 225 possible (x, y) pairs. Fifteen of these 225 pairs
occur when x =y, establishing the baseline level of performance for a given site (val-
idation performed using the parameters calibrated at that same location). Of the 210
remaining (x,y) pairs, 120 of them consist of paired catchments in which x and y are
located in unrelated classes, 60 consist of paired catchments in which x and y are
located in a “similar” class (different by a single split within the classification tree), and
30 consist of paired catchments in which x and y fall within the same hydroclimatic
class (but x and y do not represent the same catchment). Figure 7 presents box plots
illustrating the results of these three sets of pairs and Table 1 presents the quantitative
results.

These findings show that calibrating the model at one location and applying those
parameters elsewhere within the same class (green) is preferable to applying those
parameters in a similar, but not identical class (yellow) and vastly superior to applying
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those parameters in an unrelated class (red). The differences between any two clusters
(same-class, similar-class, unrelated class) are all significant at the a = 0.01 level (p <
0.001 in all cases) as calculated by a two-sample, heteroscedastic t test (Welch, 1947).

3.3 Impact of soils: cross-validation results for edaphic and hydro-climatic
similarity

To isolate the impacts of soil types (edaphic similarity) on soil moisture prediction,
groups of sensor locations among the 15 SCAN sites that are hydro-climatically similar
were analyzed, shown in Fig. 8. The soil textural data for each of these fifteen sensors
are plotted on a soil texture pyramid diagram in Fig. 9. These data were obtained from
either Pedon Soil Reports available through the SCAN network (which provide precise
percentages of clay, silt, and sand), or, where this information was unavailable, from
soil information in the national soil Web database?.

Of the thirteen sensors from the four hydro-climatic classes with multiple SCAN sen-
sors (light green, blue, dark green, and brown in Figs. 8 and 9), 30 (x,y) pairs exist
where the model can be calibrated at site x and its parameters applied at site y. Note
that (x,y) is not equivalent to (y, x) as the sites for calibration and validation are re-
versed. Of these 30 pairs, 20 pairs are edaphically similar as well. However, 10 of them
include a pair of points where the soil types or terrain types are notably misaligned (for
example, light green dots in Fig. 10 where two of the three sensors are in silty clay loam
and the third is in sandy loam — a notably different soil). A similar analysis to the one
presented in Fig. 7 and Table 1 has been reproduced, comparing the loss in predictive
power (Fr’z) for the 20 pairs with similar hydro-climates and soils against the loss for the
10 pairs in which either the soil texture (Fig. 9) or type do not align. The average loss
of 1.0 % for the 20 very similar pairs is a much smaller decline than the 8.0 % average
decline observed for the 10 pairs for which soil/terrain information suggests dissimi-
larity. These results are significant with a p value of approximately 0.02. Additionally,

2http://websoilsurvey.nrcs.usda.gov/app/WebSoiISurvey.aspx
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the upper-most two green dots in Fig. 7, where calibrated parameters at one location
perform poorly at another of similar hydro-climatic class, fall within these 10 cases.

These observations show the importance of soil information, or edaphic similarity.
While pairs of calibration/validation locations with similar hydro-climates, but dissimilar
soils, show a decline in performance as compared with pairs of locations where both
are similar, so too do locations with similar soils, but dissimilar hydro-climates. The
shaded circles in Fig. 10 illustrate groups of sensors that are quite similar in terms
of soil textures. However, despite their soil similarities, differences in hydro-climates
hinder cross-application, showing a decline in performance of 10.9 % for all (x, y) pairs
within the shaded regions of Fig. 10 for which x and y are not from the same hydro-
climatic class.

As summarized in Fig. 11, these results suggest that in cases where both soil type
and hydro-climate align, very little performance is lost when parameters are re-applied
(1.0 %), moderate declines in performance are observed when one of these two factors
are aligned (8.0 % if hydro-climates align and soil types do not; 10.9 % if soil types align,
but hydro-climates do not), and large declines in performance appear when neither
align (20.5 %). Clearly both types of attributes are important and should be considered
in future modeling work.

4 Discussion: future work to improve predictions

This section discusses other approaches that could be used in the future to improve
and broaden the applicability of the methods developed in this work. First, we will con-
sider micro-topographic effects on soil moisture, as local peaks and valleys can cause
soils to dry more or less rapidly. Second, we will discuss a conceptual omission within
the diagnostic soil moisture equation — infiltration excess. Finally, we will discuss the
role of future satellite data on soil moisture modeling.
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4.1 Estimates enhanced by topographic classification

Ultimately, the combination of a hydro-climatic classification system and the diagnostic
soil moisture equation demonstrates a generalization of calibrations, facilitating predic-
tions at any location where a viable sensor exists within a similar hydro-climatic class
and soil type. One possible approach to further improving predictive accuracy is to dis-
aggregate the soil moisture estimates as a function of local topography. While SCAN
sites used for soil moisture data are generally located on flat surfaces, predictions may
be needed at sites located on ridges or in valleys where the soils are likely to be wetter
or drier than their surroundings. This requires the notion of regional topological classifi-
cation. In this manner, the notion of similarity is extended to include hydro-climatology,
soil characteristics, and topographic designation (ridge, slope, valley, etc). Preliminary
analyses suggest that small-scale topography does play a meaningful role in the wet-
ting/drying process. Future research with more extensive datasets in locations with
more complex topological contours could improve soil moisture predictions by enabling
the models developed in this work to be adjusted as a function of local topographic
classification.

4.2 An enhanced diagnostic soil moisture equation

The diagnostic soil moisture equation could also be improved in future modeling efforts
by considering overland flow. Currently, the model assumes that, in the absence of sat-
uration, all rainfall will ultimately infiltrate, as the porosity parameter serves as an upper
bound on soil moisture levels. The diagnostic soil moisture equation was designed orig-
inally as a daily model, and it is probably rare that on any given day, a significant fraction
of precipitation does not infiltrate. However, at the hourly scale it is quite possible that
the water from an intense rainfall event will not make its way into the soil at the location
of the sensor. To address this phenomenon, additional parameters can be introduced
into the diagnostic soil moisture equation that place an upper bound on the quantity
of rainfall that can be infiltrated during any hour (or other interval) of the convolution
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calculation for any particular soil type. While this approach would require the fitting of
additional parameters, it is likely that predictions would be improved. These additional
parameters could also be considered in assessing cross-site edaphic similarity using
the methods described above, although they may be highly correlated with existing
parameters such as porosity, residual soil moisture, and drainage.

4.3 NASA'’s Soil Moisture Active Passive (SMAP) mission

With NASA satellite data for soil moisture available at the 36, 9, and 3km scales
throughout the United States, and with the SMAP satellite scheduled to launch during
2014 (O’Neill et al., 2011), the models developed in this work will have ample measure-
ments against which to test and improve their results, and can be used to help check
the accuracy of satellite measurements. Future research in topographic disaggregation
as proposed above, using LIDAR data, could be used to improve satellite soil moisture
estimates by accounting for smaller-scale topography.

5 Conclusions

This work has demonstrated the feasibility of estimating soil moisture at locations
where soil moisture sensors are unavailable for calibration, provided they fall within
hydro-climatically and edaphically similar areas to gauged locations. By calibrating the
diagnostic soil moisture equation via a two-part genetic algorithm, improving its per-
formance via a machine learning algorithm for error correction, then validating that
algorithm at the same location in subsequent years, a baseline level of predictive per-
formance is established at fifteen locations. Next, these results are cross-validated —
deploying parameters calibrated at a given site at sites of similar and different hydro-
climatic classes, demonstrating that parameters can be re-applied elsewhere within the
same class, but not without. Finally, by incorporating edaphic information, we observe
the strongest cross-validation results when hydro-climatic and edaphic characteristics
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align. As only 24 hydro-climatic classes describe the entire nation (and only 6 describe
a significant majority), it is entirely possible that a couple dozen well-placed soil mois-
ture sensors can enable reasonably accurate soil moisture modeling at any location
within the continental United States.

Leveraging these findings, the discussion section also presented the results of pre-
liminary analysis that illustrates how further improvements in soil moisture predictions
could be gained by disaggregating based on local topography. This would enable more
accurate predictions at sites characterized by peaks and valleys that dry faster or
slower than the relatively flat locations at which soil moisture algorithms are gener-
ally calibrated. Incorporating overland flow into the diagnostic soil moisture equation
and integrating satellite data into the approach could also improve predictions in the
future.

Acknowledgements. The authors would like to acknowledge Praveen Kumar and Carl Bernac-
chi of the departments of Civil & Environmental Engineering and Plant Biology respectively at
the University of lllinois in Urbana-Champaign for their suggestions, which have led to some of
the edaphic analyses presented in this work.

References

Barricelli, N. A.: Numerical testing of evolution theories, Part Il. Preliminary tests of perfor-
mance, symbiogenesis and terrestrial life, Acta Biotheor., 16, 99-126. 1963.

Berghuijs, W. R., Sivapalan, M., Savenije, H. H. G., and Woods, R. A.: The seasonal water
balance as a window to explore catchment similarity at various time-scales, in preparation,
2014.

Capehart, W. J. and Carlson, T. N.: Estimating near-surface soil moisture availability using a
meteorologically driven soil water profile model, J. Hydrol., 160, 1-20, 1994.

Cheng, C. T.,, Zhao, M. Y., Chau, K. W., and Wu, X. Y.: Using genetic algorithm and TOPSIS for
Xinanjiang model calibration with a single procedure, J. Hydrol., 316, 129—-140, 2006.

2339

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

HESSD
11, 2321-2353, 2014

Using hydro-climatic
and edaphic
similarity to enhance
soil moisture

E. J. Coopersmith et al.

' I““ II“


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/2321/2014/hessd-11-2321-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/2321/2014/hessd-11-2321-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

30

Chico-Santamarta, L., Richards, T., and Godwin, R. J.: A laboratory study into the mobility of
travelling irrigators in air dry, field capacity and saturated sandy soils, in: American Society
of Agricultural and Biological Engineers Annual International Meeting 2009, Reno, NV, USA,
2629-2646, 2009.

Choudhury, B. J. and Blanchard, B. J.: Simulating soil water recession coefficients for agricul-
tural watersheds, Water Resour. Bull., 19, 241-247, 1983.

Coopersmith, E., Yaeger, M., Ye, S., Cheng, L., and Sivapalan, M.: Exploring the physical con-
trols of regional patters of flow duration curves — Part 3: A catchment classification system
based on regime curve indicators, Hydrol. Earth Syst. Sci., 16, 1, doi:10.5194/hess-16-1-
2012, 2012.

Entekhabi, D. and Rodriguez-lturbe, |.: Analytical framework for the characterization of the
space-time variability of soil moisture, Adv. Water Resour., 17, 35—45, 1994.

Farago, T.: Soil moisture content: statistical estimation of its probability distribution, J. Clim.
Appl. Meteorol., 24, 371—- 376, 1985.

Fix, E. and Hodges, J. L.: Discriminatory Analysis, Nonparametric Discrimination: Consistency
Properties, Technical Report 4, USAF School of Aviation Medicine, Randolph Field, Texas,
1951.

Gamache, R. W, Kianirad, E., and Alshawabkeh, A. N.: An automatic portable near surface soil
characterization system, Geotech. Sp., 192, 89-94, 2009.

Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-
Wesley Professional, Boston, MA, USA, 1989.

Jackson, T. J., Bindlish, R., Cosh, M. H., Zhao, T., Starks, P. J., Bosch, D. D., Seyfried, M.,
Moran, M. S., Goodrich, D. C., Kerr, Y. H., and Leroux, D.: Validation of soil moisture and
ocean salinity (SMOS) soil moisture over watershed networks in the US, IEEE T. Geosci.
Remote, 50, 1530-1543, 2012.

Jones, H. G.: Irrigation scheduling: advantages and pitfalls of plant-based methods, J. Exp.
Bot., 55, 2427-2436, 2004.

O’Neill, P, Entekhabi, D., Njoku, E, and Kellogg, K.: The NASA Soil Moisture Active Pas-
sive (SMAP) mission: overview, NASA, Goddard Space Flight Center, Jet Propulsion
Laboratory, available at: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110015242_
2011016052.pdf, last access: December 2013.

Pan, F.: Estimating daily surface soil moisture using a daily diagnostic soil moisture equation,
J. Irrig. Drain. E.-ASCE, 138, 625-631, 2012.

2340

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

HESSD
11, 2321-2353, 2014

Using hydro-climatic
and edaphic
similarity to enhance
soil moisture

E. J. Coopersmith et al.

' I““ II“


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/2321/2014/hessd-11-2321-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/2321/2014/hessd-11-2321-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/hess-16-1-2012
http://dx.doi.org/10.5194/hess-16-1-2012
http://dx.doi.org/10.5194/hess-16-1-2012
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110015242_2011016052.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110015242_2011016052.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110015242_2011016052.pdf

10

15

20

25

Pan, F. and Peters-Lidard, C. D.: On the relationship between the mean and variance of soil
moisture fields, J. Am. Water Resour. As., 44, 235-242, 2008.

Pan, F, Peters-Lidard, C. D., and Sale, M. J.: An analytical method for predict-
ing surface soil moisture from rainfall observations, Water Resour. Res., 39, 1314,
doi:10.1029/2003WR002142, 2003.

Saxton, K. E. and Lenz, A.T.: Antecedent retention indexes predict soil moisture, J. Hydraul.
Div. Proc. Am. Soc. Civ. Eng., 93, 223-241, 1967.

Schaefer, G. L., Cosh, M. H., and Jackson, T. J.: The USDA Natural Resources Conservation
Service Soil Climate Analysis Network (SCAN), J. Atmos. Ocean. Tech., 24, 2073-2077,
2007.

Sharifat, K. and Kushwaha, R. L.: Sinkage simulation model for vehicles on soft soil, in: 2000
ASAE Annual Intenational Meeting, Technical Papers: Engineering Solutions for a New Cen-
tury, 1, 9—12 July 2000, Milwaukee, WI, USA, 2549-2553, 2000.

Simunek, J., Sejna, M., and van Genuchten, M.: The HYDRUS-1D Software Package for Sim-
ulating Water Flow and Solute Transport in Two-Dimensional Variably Saturated Media, Ver-
sion 2, IGWMC-TPS-70, International Ground Water Modeling Center, Colorado School of
Mines, Golden, CO, 1998.

Singh, A. and Minsker, B. S.: Uncertainty-based multiobjective optimization of groundwater
remediation design, Water Resour. Res., 44, W02404, doi:10.1029/2005WR004436, 2008.

Silva, R. B., Lancas, K. P, Miranda, E. E. V., Silva, F. A. M., and Baio, F. H. R.: Estimation
and evaluation of dynamic properties as indicators of changes on soil structure in sugarcane
fields of Sao Paulo State — Brazil, Soil Till. Res., 103, 265—270. 2009.

Steel, R. G. D. and Torrie, J. H.: Principles and Procedures of Statistics with Special Reference
to the Biological Sciences, McGraw Hill, New York, NY, USA, 187 pp., 1960.

Wetzel, P. J. and Chang, J. T.: Evapotranspiration from nonuniform surfaces — A 1st approach
for short-term numerical weather prediction, Mon. Weather Rev., 116, 600-621, 1988.

Zhang, X., Srinivasan, R., and Bosch, D.: Calibration and uncertainty analysis of the SWAT
model using Genetic Algorithms and Bayesian Model Averaging, J. Hydrol., 374, 307-317,
2009.

2341

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

HESSD
11, 2321-2353, 2014

Using hydro-climatic
and edaphic
similarity to enhance
soil moisture

E. J. Coopersmith et al.

' I““ II“


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/2321/2014/hessd-11-2321-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/2321/2014/hessd-11-2321-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2003WR002142
http://dx.doi.org/10.1029/2005WR004436

Table 1. Cross-validation results.

Unrelated class Similar class Same class

Median -10.5% -7.3% -0.8%

Mean -13.7% -7.7% -3.4%

Standard deviation 1.0% 1.1% 1.4%
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Fig. 1. Methodological flow chart.
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Fig. 2. Improvements from machine learning (KNN) models of residuals.
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Fig. 3. Soil moisture time series, SCAN site 2015, New Mexico (USA), actual soil moisture
(blue line), diagnostic soil moisture equation estimate (red line), and diagnostic soil moisture
equation with machine learning error correction (green line).
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Fig. 4. Soil moisture time series, SCAN site 2068, lowa (USA), actual soil moisture (blue line),
diagnostic soil moisture equation estimate (red line), and diagnostic soil moisture equation with
machine learning error correction (green line).
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Fig. 5. Soil moisture time series, SCAN site 2013, Georgia (USA), actual soil moisture (blue
line), diagnostic soil moisture equation estimate (red line), and diagnostic soil moisture equation
with machine learning error correction (green line).
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Fig. 6. Soil moisture time series, SCAN site 2015, New Mexico (USA), actual soil moisture
(blue line), diagnostic soil moisture equation estimate (red line), and diagnostic soil moisture
equation with machine learning error correction (green line).
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Fig. 7. Loss of predictive power (Hz) (y axis) between baseline predictions (model calibrated in
the same watershed) and cross-validation predictions (model calibrated in other watersheds).
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Fig. 8. 428 MOPEX catchments colored by hydro-climatic class (Coopersmith et al., 2012).
15 SCAN sensors (for which the diagnostic soil moisture equation is calibrated) are shown as
colored circles. Circle colors correspond to the hydro-climatic class of the point in question.
Circles with dotted borders are unique (no other sensor for calibration is available within that

class).
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Fig. 9. The 15 SCAN sensors, color-coded to match their hydro-climatic class.
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Fig. 10. The 15 SCAN sensors with similar soil textures shaded.
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Fig. 11. Venn-diagram of modeling errors with similar and different soils and hydro-climates.
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